
© 2018 MathGeekMama.com

Included in this Corriculom:

Colorful posters so kids can see examples of math in nature:

Full teacher manual with activity directions, book suggestions and links to fun crafts to do along with the lessons:

Fun Fact pages for each topic of study to use as a take home summary page:

Hexagons: Jun Jacts

hexogon is a unique shape that occurs often in the
world oround us. How mony of these facts
hexgen

siruct ther hone the shape of o beehve? hod reasanis that a hexogigrepeeing he east amount an mant of welahte

Tescellation:
Another anozng foct onoul hexogon.
an a fiat pione means you can arrons is thot they
overlopping of with no spoces arrange hext they bees use shopes. This is wioten theyon or bees use the hexagon is another reason

Plus, engaging student handouts and printable activities to accompany each topic of study.

Find samples of the 'Fun Fact' pages and some of the student handouts on the following pages.

Math in Space: Jun Facts

There are so many fun. mathematical topics to explore in outer space! Here are some
 ideas you're going to learn about in this unit.

Astronornical Unifs:

Did you know that distance in space is not measured in miles or kilometers? Scientists use the earth's distance from the sun as a unit of measure. known as an astronomical unit (AU). They then measure other planets or moons distance from the sun in AU.

Plane干 Termperatupe:

The surface temperature of some planets varies widely because of their distance from the sun. or lack of atmosphere. These large temperature swings are just one reason why planets other than
 earth are uninhabitable.

Plaaet ©roits:

An orbit is the elliptical path that planets travel as they revolve around the sun. Because each planet's orbit differs in length and each planet revolves at a different speed. one complete revolution (a "year") is different on each planet. While a year on earth is equal to 365 days. other planets might be longer or shorter.

Math in outer space: Planet orpits

Because each planet is a different distance from the sun and travels at different speeds, a year on other planets is not the same as a year on earth. Use the information below to figure out how many "earth years" it takes each planet to revolve around the sun.

Planet	Number of Months	Total "Earth Years" (in decimal form)
Mercury	3 earth months	
Venus	7 earth months	
Mars	23 earth months	
Jupiter	142 earth months	
Saturn	354 earth months	
Uranus	1009 earth months	
Neptune	1979 earth months	060
	© 2018 MathGeekMama.com	

Math in outer Space: Planet orpits

Now that you know how many "earth years" it takes each planet to revolve around the sun, answer the discussion questions below.

1. Explain how you converted the number of months to earth years in your table \qquad
2. How many more years does it take Neptune to travel its orbit than Mars? \qquad
3. Explain in your own words why some planets take so much longer to travel around the sun. \qquad
---1
4. How old would you be if you spent one year on Saturn (one complete orbit)?

Math in Nature: Fibonacci Numbers

Although Fibonacci's rabbit problem is a little unrealistic, the pattern he discovered is actually found frequently in nature. Go on a Fibonacci number hunt in your yard or garden. Draw pictures of what you find and the Fibonacci number they represent below.
\square

How do We Make a Hexajon?

How many different shapes and combinations can we use to make a hexagon? Using pattern blocks, you will roll the die \& select the pattern block shown. Then use the blocks to fill in the hexagons below. Once all hexagons are filled, write a fraction equation to represent each hexagon (where a hexagon represents one whole, a trapezoid $1 / 2$, etc.)

Fraction Addition Equations:
\qquad 4.
2.
5.
3.
6.

